Whitney Elements on Pyramids

نویسنده

  • V. GRADINARU
چکیده

V. GRADINARU AND R. HIPTMAIR † Abstract. Conforming finite elements inH(div; Ω) andH(curl; Ω) can be regarded as discrete differential forms (Whitney–forms). The construction of such forms is based on an interpolation idea, which boils down to a simple extension of the differential form to the interior of elements. This flexible approach can accommodate elements of more complicated shapes than merely tetrahedra and bricks. The pyramid serves as an example for the successful application of the construction: New Whitney forms are derived for it and they display all desirable properties of conforming finite elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A uniform rationale for Whitney forms on various supporting shapes

A method for constructing Whitney forms is proposed, which applies to tetrahedra, hexahedra, triangular prisms, and pyramids in a similar way, and proceeds from a unique generating principle, thus unifying their presentation. The principle automatically enforces conformity (i.e., “tangential” or “normal continuity” of the elementary proxy fields) at element interfaces, and generates a complex o...

متن کامل

High-order optimal edge elements for pyramids, prisms and hexahedra

Talk Abstract Edge elements are a popular method to solve Maxwell’s equations especially in time-harmonic domain. When non-affine elements are considered however, elements of the Nedelec’s first family are not providing an optimal rate of the convergence of the numerical solution toward the solution of the exact problem in H(curl)norm. We propose new finite element spaces for pyramids, prisms, ...

متن کامل

Higher-Order Discontinuous Galerkin Method for Pyramidal Elements using Orthogonal Bases

We study finite elements of arbitrarily high-order defined on pyramids for discontinuous Galerkin methods. We propose a new family of high-order pyramidal finite elements using orthogonal basis functions which can be used in hybrid meshes including hexahedra, tetrahedra, wedges and pyramids. We perform a comparison between these orthogonal functions and nodal functions for affine and non-affine...

متن کامل

Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements

We provide a comprehensive study of arbitrarily high-order finite elements defined on pyramids. We propose a new family of high-order nodal pyramidal finite element which can be used in hybrid meshes which include hexahedra, tetrahedra, wedges and pyramids. Finite elements matrices can be evaluated through approximate integration, and we show that the order of convergence of the method is conse...

متن کامل

Higher - Order Finite Elements on Pyramids

We present a construction of high order finite elements for H1, H(curl), H(div) (and L2) on a pyramid, which are compatible with existing tetrahedral and hexahedral high order finite elements and satisfy the commuting diagram property.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999